
50+ Clock Reasoning Questions and Answers
Clock Reasoning Questions
Q-26. At what time between 6 to 7 O’ clock minute and hour hand will be at right angle or makes 90° angle ?
(a) 6 : 38[latex]\frac{2}{11}[/latex], 6:43 [latex]\frac{7}{11}[/latex]
(b) 6:43 [latex]\frac{7}{11}[/latex], 6:49 [latex]\frac{1}{11}[/latex]
(c) 6 : 49[latex]\frac{1}{11}[/latex], 6:16[latex]\frac{4}{11}[/latex]
(d) 6: 16[latex]\frac{4}{11}[/latex], 6:54[latex]\frac{6}{11}[/latex]
[showhide type="links26" more_text="View Answer and Solution " less_text="Hide answer "] Answer: (c) 6 : 49[latex]\frac{1}{11}[/latex], 6:16[latex]\frac{4}{11}[/latex] Solution: By unique Formula = H : [latex] \left ( H \times 5\pm \frac{Angle}{6} \right )\times \frac{12}{11}[/latex] H = 6, Angle = 90° = 6: [latex] \left ( 6 \times 5\pm \frac{90}{6} \right )\times \frac{12}{11}[/latex] = 6: [latex]\left ( 30\pm 15 \right )\times \frac{12}{11}[/latex] = 6: [latex]\left ( 30\dotplus 15 \right )\times \frac{12}{11}[/latex] = 6: [latex]\left ( 30 - 15 \right )\times \frac{12}{11}[/latex] = 6:25 x [latex]\frac{12}{11}[/latex], 6 : 15x [latex]\frac{12}{11}[/latex] = 6:[latex]\frac{540}{11}[/latex], 6: [latex]\frac{180}{11}[/latex] = 6:49[latex]\frac{1}{11}[/latex], 6:16 [latex]\frac{4}{11}[/latex] [/showhide]
Q-27. At what time between 3 to 4 O’clock minute and hour hand are opposite to each other?
(a) 3 : 43[latex]\frac{7}{11}[/latex]
(b) 3 : 38[latex]\frac{2}{11}[/latex]
(c) 3 : 49[latex]\frac{1}{11}[/latex]
(d) 3: 54[latex]\frac{6}{11}[/latex]
[showhide type="links27" more_text="View Answer and Solution " less_text="Hide answer "] Answer: (c) 3 : 49[latex]\frac{1}{11}[/latex] Solution: By unique Formula = H : [latex] \left ( H \times 5\pm \frac{Angle}{6} \right )\times \frac{12}{11}[/latex] H = 3, Angle = 180° Note: Hands are opposite means 180° = 3: [latex] \left ( 3 \times 5\pm \frac{180}{6} \right )\times \frac{12}{11}[/latex] = 3: [latex]\left ( 15\pm 30 \right )\times \frac{12}{11}[/latex] = 3: [latex]\left ( 15\dotplus 30 \right )\times \frac{12}{11}[/latex], 3: [latex]\left ( 15 - 30 \right )\times \frac{12}{11}[/latex] = 3:45 x [latex]\frac{12}{11}[/latex], 3 : (-15)x [latex]\frac{12}{11}[/latex] = 3:[latex]\frac{540}{11}[/latex], 3: [latex]\frac{-180}{11}[/latex] Angle = 180° = 3:49[latex]\frac{1}{11}[/latex] [/showhide]
Q-28. When did the minute and hour hand makes 180° angle between 6 to 70′ clock?
(a) 6: 54[latex]\frac{6}{11}[/latex] (b) 6:60
(c) 6:00 (d) 6:5[latex]\frac{5}{11}[/latex]
[showhide type="links28" more_text="View Answer and Solution " less_text="Hide answer "] Answer: (c) 6:00 Solution: By unique Formula = H : [latex] \left ( H \times 5\pm \frac{Angle}{6} \right )\times \frac{12}{11}[/latex] H = 6, Angle = 180° Note: Hands are opposite means 180° = 6: [latex] \left ( 6 \times 5\pm \frac{180}{6} \right )\times \frac{12}{11}[/latex] = 6: [latex]\left ( 30\pm 30 \right )\times \frac{12}{11}[/latex] = 6: [latex]\left ( 30\dotplus 30 \right )\times \frac{12}{11}[/latex], 6: [latex]\left ( 30 - 30 \right )\times \frac{12}{11}[/latex] = 6:60 x [latex]\frac{12}{11}[/latex], 6 : (0)x [latex]\frac{12}{11}[/latex] = 6:[latex]\frac{720}{11}[/latex], 6:00 Not Possible Note: minute and hour hand does not make 180° angle between 5 to 6 and 6 to 7 O' clock. [/showhide]
Q-29. At what time between 8 to 9 O’ clock the minute and hour will apart 7 minutes to each other?
(a) 8:42, 8:51[latex]\frac{3}{11}[/latex]
(b) 8: 36, 8:51[latex]\frac{3}{11}[/latex]
(c) 8:09, 8:47[latex]\frac{4}{11}[/latex]
(d) 8: 7, 8: 28[latex]\frac{9}{11}[/latex]
[showhide type="links29" more_text="View Answer and Solution " less_text="Hide answer "] Answer: (b) 8: 36, 8:51[latex]\frac{3}{11}[/latex] Solution: [latex]\frac{Angle}{6}[/latex]= minutes By unique Formula = H : [latex] \left ( H \times 5\pm \frac{Angle}{6} \right )\times \frac{12}{11}[/latex] = 8: [latex] \left ( 8 \times 5\pm 7 \right )\times \frac{12}{11}[/latex] = 8: [latex]\left ( 40\pm 7 \right )\times \frac{12}{11}[/latex] = 8: [latex]\left ( 40\dotplus 7 \right )\times \frac{12}{11}[/latex], 8: [latex]\left ( 40 - 7 \right )\times \frac{12}{11}[/latex] = 8:47 x [latex]\frac{12}{11}[/latex], 8 : 33 x [latex]\frac{12}{11}[/latex] = 8:[latex]\frac{564}{11}[/latex], 8: [latex]\frac{396}{11}[/latex] = 8:51[latex]\frac{3}{11}[/latex], 8:36
Q-30. The minute hand of a clock overtakes the hour hand at intervals of 64 minutes of correct time. How much a day does the clock gain or lose?
(a) 43[latex]\frac{9}{11}[/latex]minute loss
(b) 32[latex]\frac{8}{11}[/latex]minute gain
(c) 33[latex]\frac{9}{11}[/latex]minute gain
(d) 32[latex]\frac{8}{11}[/latex]minute loss
[showhide type="links30" more_text="View Answer and Solution " less_text="Hide answer "] Answer: (b) 32[latex]\frac{8}{11}[/latex]minute gain Solution: Normal watch overtakes in = 65[latex]\frac{5}{11}[/latex] minute This watch overtakes in = 64 minute It means In 64 minutes the clock gains =65[latex]\frac{5}{11}[/latex] - 64 = 1[latex]\frac{5}{11}[/latex] = [latex]\frac{16}{11}[/latex] min “In one day = 24 × 60 minutes” Then in 1 minute clock gains = [latex]\frac{16}{11\times 64}[/latex] In 24 × 60 Minute clock gains =[latex]\frac{16\times 24\times 60 }{11\times 64}[/latex] = [latex]\frac{360}{11}[/latex] minutes = 32[latex]\frac{8}{11}[/latex] minutes [/showhide]